1/5x^2=25

Simple and best practice solution for 1/5x^2=25 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/5x^2=25 equation:



1/5x^2=25
We move all terms to the left:
1/5x^2-(25)=0
Domain of the equation: 5x^2!=0
x^2!=0/5
x^2!=√0
x!=0
x∈R
We multiply all the terms by the denominator
-25*5x^2+1=0
Wy multiply elements
-125x^2+1=0
a = -125; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-125)·1
Δ = 500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{500}=\sqrt{100*5}=\sqrt{100}*\sqrt{5}=10\sqrt{5}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{5}}{2*-125}=\frac{0-10\sqrt{5}}{-250} =-\frac{10\sqrt{5}}{-250} =-\frac{\sqrt{5}}{-25} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{5}}{2*-125}=\frac{0+10\sqrt{5}}{-250} =\frac{10\sqrt{5}}{-250} =\frac{\sqrt{5}}{-25} $

See similar equations:

| 2n-10=40 | | 3(1-8x)+3x=87 | | 2=9w | | -3.2+d=5 | | 3(a-4)=42 | | F(x)=10x^2+20x-11 | | -7-14(x-21)=399 | | F(x)=10x2+20x+-11 | | q+10/4=3 | | 27=2a/3 | | 6x-8x+4=x-9+13 | | 27=2/3a | | 10(x+1)=5(2x-2) | | 27=3/2a | | 194=7x+5(4x-18) | | /1+3-(3x7)+7-5=10 | | 4x-3=4(x-0.75) | | -3.2+5=d | | 9(3-a)=-108 | | -7+4d=-15 | | -8-10-10f=6f+10 | | a+2(3)-7+a=27 | | 6x-8+4=x-9+13 | | 26.5=9+7(x+2.5) | | 27-9a=-108 | | 17=-r-2 | | F(x)=-0.4(12)+16.3 | | 5(6a-2)+12a=0 | | 124-y=628 | | 10(x/10-8/5)=0 | | 1x+13=101/9 | | 13-m=2 |

Equations solver categories